Interface between simulation and ML

Anja Butter

ITP, Universität Heidelberg

arXiv:1907.03764, 1912.08824, 1912.00477, and 2006.06685
with Armand Rousselot, Marco Bellagente, Gregor Kasieczka, Tilman Plehn, and Ramon Winterhalder

The HEP trinity

Theory

Fundamental Lagrangian

Perturbative QFT

Standard Model vs. new physics

Matrix elements, loop integrals

Experiment

Complex detector

ATLAS, CMS, LHCb, ALICE, ...

Reconstruction of individual events

• Big data: jet images, tracks, ...

Precision simulations

First-principle Monte Carlo generators

- Simulation of parton/particle-level events
- Herwig, Pythia, Sherpa, Madgraph,

Detector simulation

- Geant4, PGS, Delphes, ...
- \Rightarrow Unweighted event samples

Neural networks for precision simulations

Problems in MC simulations

- Event generation:
 - High-dimensional phase space
 - Low unweighting efficiency
 - Higher order: exponential in computing time
- Highly complex full detector simulation \rightarrow very slow
- Limited resources: Precision vs. computing time

Advantages of neural networks

- Flexible parametrisation
- Interpolation properties
- Fast evaluation
- Multiple generative models: GAN, VAE, normalizing flow

Possibilities for ML in event generation

Event generation

- Generating 4-momenta
- Z > II, pp > jj, $pp > t\bar{t} + decay$

[1901.00875] Otten et al. VAE & GAN [1901.05282] Hashemi et al. GAN [1903.02433] Di Sipio et al. GAN [1903.02556] Lin et al. GAN [1907.03764, 1912.08824] Butter et al. GAN [1912.02748] Martinez et al. GAN [2001.11103] Alanazi et al. GAN

Monte Carlo integration

- Estimating matrix element
- Neural importance sampling

[1707.00028] Bendavid, Regression & GAN [1810.11509] Klimek and Perelstein [1912.11055] Bishara and Montull Regression [2001.05478] Bothmann et al. NF

[2001.05486, 2001.10028] Gao et al. **NF** [2002.07516] Badger and Bullock **Regression**

Detector simulation

- Jet images
- Fast shower simulation in calorimeters

[1701.05927] de Oliveira et al. GAN [1705.02355, 1712.10321] Paganini et al. GAN [1802.03325, 1807.01954] Erdmann et al. GAN [1805.00850] Musella et al. GAN [ATL-SOFT-PUB-2018-001, ATL-SOFT-POCC-2019-007] ATLAS VAE & GAN [1909.01359] Carazza and Dreyer GAN [2005.05334] Buhmann et al. VAE

Unfolding

Detector to parton/particle level distributions

[1806.00433] Datta et al. **GAN** [1911.09107] Andreassen et al. [1912.0047] Bellagente et al. **GAN** [2006.06685] Bellagente et al. **NF**

- 1. Generate phase space points
 - 2. Calculate event weight

$$w_{event} = f(x_1, Q^2) f(x_2, Q^2) \times \frac{\mathcal{M}(x_1, x_2, p_1, \dots p_n)}{\mathcal{M}(x_1, x_2, p_1, \dots p_n)} \times J(p_i(r))^{-1}$$

3. Unweighting via importance sampling \rightarrow optimal for $w\approx 1$

... or train generative network directly on events

- Generative Adversarial Networks (GAN)
- Training data: true events {x_T}
 Output data: generated events {x_G}
- Discriminator distinguishes $\{x_T\}, \{x_G\}$ $[D(x_T) \to 1, D(x_G) \to 0]$

$$L_D = \left\langle -\log D(x) \right\rangle_{x \sim P_T} + \left\langle -\log(1 - D(x)) \right\rangle_{x \sim P_G} \xrightarrow{D(x) \to 0.5} -2\log 0.5$$

• Generator fools discriminator $[D(x_g) \rightarrow 1]$

$$L_G = \langle -\log D(x) \rangle_{x \sim P_G}$$

⇒ New statistically independent samples

Why GANs? Features, problems and solutions

- + Generate better samples than VAE
- + Large community working on GANs
- Unstable training

Solutions

- Regularization of the discriminator, eg. gradient penalty [Ghosh, Butter et al., ...]
- Modified training objective:
 - Wasserstein GAN (incl. gradient penalty) [Lin et al., Erdmann et al., ...]
 - Least square GAN (LSGAN) [Martinez et al., ...]
 - MMD-GAN [Otten et al., ...]
 - MSGAN [Datta et al., ...]
 - Cycle GAN [Carazza et al., ...]
- Use of symmetries [Hashemi et al., ...]
- Ose of symmetries [Hashemi et al., .
- Whitening of data [Di Sipio et al., ...]
- Feature augmentation [Alanazi et al., ...]

How to GAN LHC events

Idea: generate hard process

- Realistic LHC final state $t \bar{t} \to 6$ jets [1907.03764]
- 18 dim output [fix external mass, no mom. cons.]
- Flat observables precise
- Systematic undershoot in tails [10-20% deviation]

How to GAN LHC events

Idea: generate hard process

- Realistic LHC final state $t\bar{t} o 6$ jets [1907.03764]
- 18 dim output
- Flat observables precise
- Systematic undershoot in tails [10-20% deviation]
- ullet Sharp phase-space structures, not using Γ_W

$$\begin{split} \mathsf{MMD}^2(P_T,P_G) &= \left\langle k(x,x') \right\rangle_{x,x'\sim P_T} + \left\langle k(y,y') \right\rangle_{y,y'\sim P_G} \\ &- 2 \left\langle k(x,y) \right\rangle_{x\sim P_T,y\sim P_G} \end{split}$$

How to GAN LHC events

Idea: generate hard process

- Realistic LHC final state $t\bar{t} \to 6$ jets [1907.03764]
- 18 dim output
- Flat observables precise
- Systematic undershoot in tails [10-20% deviation]
- Sharp phase-space structures, not using Γ_W [MMD-loss]
- 2D correlations

How to GAN event subtraction

Idea: sample based subtraction of distributions [1912.08824]

- 1 Consistent multidimensional difference between two distributions
- 2 Beat bin-induced statistical uncertainty [interpolation of distributions]

$$\Delta_{B-S} = \sqrt{n_B^2 N_B + n_S^2 N_S} > \max(\Delta_B, \Delta_S)$$

- Many applications:
 - Soft-collinear subtraction, multi-jet merging, on-shell subtraction
 - Background subtraction [4-body decays → preserves correlations]

Example I: Z pole

- Training data:
 - $\begin{array}{c} \bullet & pp \rightarrow e^+e^- \\ \bullet & pp \rightarrow \gamma \rightarrow e^+e^- \end{array}$
 - 1 M events per dataset, MadGraph5
- Generated events: Z-Pole + interference

Example II: Dipole subtraction

- ullet Theory uncertainties o limiting factor for HL-LHC
- Higher order: Subtract diverging Catany Seymour Dipole from real emission term
- 1 M events per dataset, SHERPA

How to GAN away detector effects

Idea: invert Markov process [1912.00477]

Detector simulation

- Typical Markov process
- Prior dependent inversion possible [Datta et al.]
- Aim: unfolding multidimensional phase space

Reconstruct parton level $pp \rightarrow ZW \rightarrow (II)(jj)$

- GAN: no connection between input and discr.
 - \rightarrow use fully conditional GAN (FCGAN)

How to GAN away detector effects

Idea: invert Markov process [1912.00477]

Reconstruct parton level $pp \rightarrow ZW \rightarrow (II)(jj)$

- Use fully conditional GAN (FCGAN)
- Inversion works √

Eq.(7): $p_{T,j_1} = 30 \dots 100 \text{ GeV} \quad (\sim 88\%)$

Eq.(8): $p_{T,j_1} = 30 \dots 60 \text{ GeV}$ and $p_{T,j_2} = 30 \dots 50 \text{ GeV}$ ($\sim 38\%$)

How to GAN away detector effects

Idea: invert Markov process [1912.00477]

Reconstruct parton level $pp \rightarrow ZW \rightarrow (II)(jj)$

- Use fully conditional GAN (FCGAN)
- Inversion works √
- BSM injection √
 - train: SM events
 - test: 10% events with W' in s-channel

Curing shortcomings with invertible structure

- cGAN calibration curves: mean correct, distribution too narrow
- INN: Normalizing flow with fast evaluation in both directions

Conditional invertible neural networks

Condition INN on detector data [2006.06685]

$$x_p \longleftrightarrow g(x_p, f(x_d)) \to \\ \leftarrow \text{unfolding: } \bar{g}(r, f(x_d))$$

$$\text{Minimizing } L = \left\langle \frac{||g(x_p, f(x_d)))||_2^2}{2} - \log \left| \frac{\partial g(x_p, f(x_d))}{\partial x_p} \right| \right\rangle_{x_p \sim P_p, x_d \sim P_d} - \log p(\theta)$$

 \rightarrow correctly calibrated parton level distributions

Summary

- We can boost standard event generation using ML
- GANs can learn underlying distributions from event samples
- Possibilities to stabilize GAN training: gradient penalty, WGAN-GP, LSGAN,...
- MMD improves performance for special features
- Successful sample based subtraction implemented
- Applications: background subtraction, soft-collinear subtraction, . . .
- Unfold high-dimensional detector level distributions with cGANs and INN
- Stable under insertion of new data, proper calibration achieved by cINN

Important next steps

- 1. Quantify uncertainties (eg. Bayesian networks)
 - including correlations
- 2. High precision
- 3. Automization
 - move away from hand engineered networks